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Abstract--This article analyses the match tracking anomaly (MTA ) o f  the A R T M A P  neural network. The anomaly 
arises when an input pattern exactly matches its category prototype that the network has previously learned, and the 
network generates a prediction (through a previously learned associative link) that contradicts the output category 
that was selected upon presentation o f  the corresponding target output. Carpenter et al. claimed that such an 
anomalous situation will never arise i f  the (binary) input vectors have the same number o f  ls (Carpenter et al., 1991, 
Neural Networks, 4, 565-588). 

This paper shows that such situations can in fact occur. The timing according to which inputs are presented to the 
network in each learning trial is crucial." i f  the target output is presented to the network before the corresponding 
input pattern, certain pattern sequences will lead the network to the MTA.  Two kinds o f  M T A  are distinguished." one 
that is independent o f  the choice parameter (8)  o f  the ARTb module, and another that is not. Results o f  experiments' 
that were carried out on a machine learning database demonstrate the existence o f  the match tracking anomaly as 
well as support the analytical results presented here. 

Keywords---Match tracking, ARTMAP, Adaptive resonance theory, Supervised learning, Self-organization, 
Hierarchical clustering, Machine learning, Zoo database. 

1. I N T R O D U C T I O N  

The A R T M A P  neural network architecture (Car- 
penter et al., 1991a) is a supervised learning system 
capable of  self-organising stable recognition cate- 
gories in response to arbitrary sequences of  input 
patterns. I t  is built up of  a pair of  adaptive resonance 
theory (Carpenter & Grossberg, 1987a) modules 
(ARTa and ARTb) that are connected through an 
inter-ART associative memory  module. The network 
has an internal mechanism that conjointly maximises 
predictive generalisation and minimises predictive 
error through a self-regulating process called match 
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tracking. Whenever the network makes a wrong 
prediction through a previously learned associative 
link, the vigilance parameter  Pa of  the ARTa module 
will be raised by the minimal amount  needed to 
correct the predictive error at the ARTb module. The 
ARTa module will then start  searching for another 
category for the current input until it finds a correct 
prediction, or creates a new ARTa category and its 
associative link to the corresponding ARTb category. 
The A R T M A P  architecture has been applied to 
several machine learning benchmark problems 
(Carpenter et al., 1991a, 1992), and compared 
favourably with traditional AI learning methods. 

There are, however, anomalous  situations that can 
occur during training, in which an ARTa input 
matches its category prototype perfectly and the 
network makes a wrong prediction (Carpenter et al., 
1991a). Raising ARTa vigilance above that (perfect) 
matching level will prevent the network from finding 
any other ARTa category, and the wrong prediction 
will not be corrected. Carpenter  et al. claimed that 
this situation (we shall call it match tracking anomaly,  
or M T A  henceforth) will never arise if the (binary) 
input patterns have the same number  of  ls 
(Carpenter et al., 1991a, pp. 584-585). 
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In this article, we show that the MTA can in fact 
arise even if the inputs have the same number of  ls 
and the training set is non-contradictory. More 
specifically, we discuss the importance of  the timing 
according to which the input and target patterns are 
presented to the network in each learning trial. We 
first show (in Section 4.1) that the MTA will never 
arise if each input (with the same number of  Is) is 
presented to the network such that it can make a 
prediction (through an existing associative link) and 
"pr ime"  itself before the corresponding (non-contra- 
dictory) target is presented. This timing proves to be 
crucial in that if the ARTb (target) input is presented 
before the ARTa input, the MTA can arise (see 
Section 4.2). We show this by specifying a set of 
initial conditions for the network and a sequence of 
input-target  pairs that will lead the network to the 
MTA. Furthermore, we show that there are two 
distinct classes of  conditions that cause the MTA: one 
that depends solely on the sequence in which inputs 
are presented from a training set (see the proof  in 
Section 4.2.1), and another, in which MTA can only 
occur if the choice parameter (/3) of  the ARTb 
module is above a certain threshold, which depends 
on the size of  the target inputs (see the proof  in 
Section 4.2.2). The combined effect of  these two 
conditions can be observed clearly from the results of 
the experiments we carried out on a benchmark 
machine learning database (in Section 5). 

We have also extended the classes of  problems to 
which the ARTMAP can be applied by allowing the 
ARTb module, too, to develop " t rue"  clusterings. 
Carpenter et al. introduced the A R T M A P  network to 
be used for pattern classification where the ARTb 
(target) inputs are expected category codes to which 
the corresponding inputs should belong. This implies 
that there is no overlap between any two target 
patterns. Therefore the ARTb module will develop 
the same categories on a given sequence of  training 
patterns at any non-zero vigilance level. This makes 
timing of  input presentations irrelevant (see Section 
4.3). This issue was, therefore, of  no special concern 
in Carpenter et al. (1991a), and timing was only 
discussed in Appendix A.2 where all possible 
combinations of  ARTa and ARTb input timings 
were listed with and without predictions. If, however, 
the AR TMAP  network is applied to a more general 
"mapping"  problem where target outputs may 
overlap, the level of  ARTb vigilance will affect the 
development of categories. One such problem is to 
learn a two-level hierarchy of input classes from a 
training set where each input pattern is identical to its 
target pair (i.e., auto-associative map). We discuss 
this in more detail in Section 5. 

Section 2 introduces the ARTMAP network at a 
level that is necessary for understanding the main 
results of  this paper. Section 3 defines the match 

tracking anomaly (MTA)--which is the centre of this 
article. Section 4 discusses the circumstances under 
which the MTA condition cannot and can occur. 
Relevant theorems and proofs are given in Sections 
4.1 and 4.2, respectively. A theorem regarding the 
important case of  ARTb vigilance equal to 1 is shown 
in Section 4.3. The experiments are discussed and the 
results are presented in Section 5, followed by a 
discussion in Section 6. Finally, conclusions are 
drawn in Section 7. 

2. THE ARTMAP NETWORK 

Adaptive resonance theory (ART) architectures are 
neural networks that develop stable recognition codes 
in real time by self-organisation, in response to 
arbitrary sequences of  input patterns (Carpenter & 
Grossberg, 1987a). They were designed to solve the 
stability-plasticity dilemma that every intelligent 
machine learning system has to face: how to keep 
learning from new events without forgetting pre- 
viously learned information. ART networks were 
originally proposed to accept binary input patterns, 
and were later extended for both continuous and 
binary inputs (Carpenter & Grossberg, 1987b; 
Carpenter et al., 1991b). l 

An ART module has three layers: the input layer 
(F0), the comparison layer (F1), and the recognition 
layer (F2), with m, m and n neurons, respectively (see 
module ARTa or ARTb in Figure 1). The neurons, or 
nodes, in the F2 layer represent input categories. The 
F1 and F2 layers interact with each other through 
weighted bottom-up and top-down connections, 
which are modified when the network learns. There 
are additional gain control signals in the network 
(not shown in Figure 1) that regulate its operation, 
but those will not be detailed here. 

At each presentation of  a non-zero binary input 
pattern x (X i E {0, 1}, i = 1 ,2 , . . .  ,m), the network 
attempts to classify it into one of  its existing categories 
based on its similarity to the stored prototype of each 
category node. More precisely, for each node j in the 
F2 layer, the bottom-up activation Tj = y']~iml xiZij is 
calculated, where Zig is the strength of the bottom-up 
connection between F1 node i and F2 node j. Since 
both the input and the bottom-up weight vectors are 
binary (with Zij being the normalised version ofzij), Tj 
can also be expressed as 

Tj :  I xnZ j l -  Ixnzjl 
~+lzjl '  

(1) 

i From now on, we shall use ART to refer to the binary ART 
(called ART1) unless otherwise stated. Also, for easy reference, this 
paper attempts to use the same notation as Carpenter et al. (1991 a), 
since their claim is the focus of this article. 
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FIGURE 1. Architecture of the ARTMAP network. [This figure is a simplified version of the one that appeared in Carpenter et al. (1992).] 

where l" I is the norm operator (Ixl ~ ~im~ xi), zj is 
the (binary) top-down template (or prototype) of 
category j, and fl > 0 is the choice parameter 
(Carpenter et al., 1991a). Then the F2 node J that 
has the highest bottom-up activation is selected, i.e. 
Tj = max{Tjb/= 1 ,2 , . . . , n} .  The prototype vector 
of  the winning node J ( z j ;  ZJi E {0, 1}, 
i = 1 ,2 , . . . ,m)  is then sent down to the F1 layer 
through the top-down connections, where it is 
compared to the current input pattern: the strength 
of the match is given by 

Ix nz~l 
Ixl ' 

which is compared with a system parameter p called 
vigilance (0 < p < 1). If  the input matches suffi- 
ciently, i.e., the match strength > p, then it is assigned 
to F2 node J and both the bottom-up and top-down 
connections are adjusted for this node: 

x n z ,  (old) 
Zj (new) - fl + Ix n zj (old) I 

and 

zj(new) = x n z j (old) .  2 (2) 

If  the stored prototype zj does not match the input 
sufficiently (match strength < p), the winning F2 
node J is reset for the period of presentation of the 
current input. Then another F2 node (or category) 
will be selected, whose prototype will be matched 

2 This is the so-called fast learning mode of the network, which 
is typically used in binary ART. 

against the input. This "hypothesis-testing" cycle is 
repeated until the network either finds a stored 
category whose prototype matches the input closely 
enough, or allocates a new F2 node. Then learning 
takes place as described above. After an initial period 
of self-stabilisation, the network will directly (i.e., 
without search) access the prototype of one of the 
categories it has found in a given training set. The 
higher the vigilance level, the larger number of 
smaller, or more specific, categories will be created. 
(If p -- l, the network will learn every unique input 
perfectly with a different category.) 

An important feature of  the category selection 
method of  the ART network is that if categories J1 
and J2  are proper subsets of an input pattern x, i.e., 
I x n z j i  I = IzJ ,  I and Ix n Zj2 [ : [Zj2 [, the category 
whose prototype is the larger subset will be selected 
first (for the vigilance test). This can be seen from (1), 
and that the f(y)___z__ function monotonically - -  f l + y  

increases for fl > 0. This feature will play an 
important role in proving one of the MTA 
conditions (see Section 4.2.1). 

The architecture of the ARTMAP network can be 
seen in Figure 1. It consists of two ART modules that 
are linked together through an "inter-ART" associa- 
tive memory, called map field (Fab). Module ARTs 
(with a baseline vigilance Pa) learns to categorise 
input patterns presented at layer F~, while module 
ARTb (with vigilance Pb) develops categories of 
target patterns presented at layer Fo b. Modules F] 
and F ab a re  fully connected via associative links 
whose strengths are adjusted through learning. There 
are one-to-one, two-way, and non-modifiable con- 
nections between nodes in the F ab and F~ layers, i.e., 
each F b node is connected to its corresponding F ab 

node, and vice versa. A new association between an 
ARTs category J and an ARTb category K is learned 
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by setting the corresponding F~-~  F ab link to one 
and all other links from the same ARTa node to zero. 
When an input pattern is presented to the network, 
the F ab layer will receive inputs from both the ARTa 
module (through the previously learned J---~ K 
associative link) and the ARTb module (from the 
active F b category node). If  the two F ab inputs 
match, i.e., the network's prediction is confirmed by 
the selected target category, the network will learn by 
modifying the prototypes of  the chosen ARTa and 
ARTb categories according to the ART learning 
equations shown above. If  there is a mismatch at the 
F ab layer, a map field reset signal will be generated, 
and a process called match tracking will start, 
whereby the baseline vigilance level of  the ARTa 
module will be raised by the minimal amount  needed 
to cause mismatch with the current ARTa input at the 
F~ layer. This will subsequently trigger a search for 
another ARTa category, whose prediction will be 
matched against the current ARTb category at the 
F ab layer again. This process continues until the 
network either finds an ART~ category that predicts 
the category of the current target correctly, or creates 
a new F~ node and a corresponding link in the map 
field, which will learn the current input/target pair 
correctly. The ARTa vigilance is then allowed to 
return to its resting level (Pa). 

After a few presentations of  the entire training set, 
the network will self-stabilise, and will read out the 
expected output for each input without search. 

3. T H E  MATCH TRACKING ANOMALY (MTA) 

The purpose of  this article is to analyse the behaviour 
of  the match tracking anomaly (MTA), which was 
introduced in Carpenter et al. (1991a, pp. 584-585) as 
follows: 

In particular, if a C_ z~ [a is an ARTa input here], 
match tracking makes Pa > l, SO a cannot activate 
another category in order to learn the new 
prediction. The following anomalous case can 
thus arise. Suppose that a = z~, but the ARTb 
input b mismatches the ARTb expectation zbr 
previously associated with J. Then match tracking 
will prevent the recoding that would have 
associated a with b. That  is, the A R T M A P  system 
with fast learning and choice will not learn the 
prediction of an exemplar that exactly matches a 
learned prototype when the new prediction 
contradicts the previous predictions of  the 
exemplars that created the prototype. This 
situation does not arise when all ARTa inputs a 
have the same number of  ls [...] 
(The same number of  Is in the input can be 

guaranteed by representing input patterns in comple- 
ment coding (Carpenter et al., 1991b), according to 
which both input a and its complement a c (where 

every bit in a is inverted) are shown to the network. 
Thus the norm of  the new input vector ](a, aC) l will 
be constant.) 

It obviously seems true that the anomalous 
situation does not arise since the norm of an ARTa 
category prototype z~ can only be reduced through 
learning due to (2). Once this reduction occurs, no 
input a can be a proper subset of  category prototype 
z~ (i.e., [ anz~l  = [a]) if the inputs have the same 
norm (i.e., number of Is). The problem can occur 
only when an input exactly matches a learned 
prototype that has not been recoded, which then 
produces a wrong prediction. In the classification 
problems in Carpenter et al, (1991a), where target 
patterns were non-overlapping category codes, it 
would mean that the network had previously learned 
a different target category for the same input. So the 
match tracking anomaly could only arise if there were 
contradictory target categories for the same input in 
the training set. 

In the following, we show that in more general 
learning tasks, in which target outputs are arbitrary 
binary vectors (not just simple category codes), the 
MTA can in fact arise even if the inputs to the 
network are complement coded, and the training set 
is non-contradictory, i.e., no two identical inputs 
have different target values. 

4. CONDITIONS FOR T H E  MATCH TRACKING 
ANOMALY 

In this section, we present conditions under which the 
match tracking anomaly can and cannot occur. It will 
be shown that the timing of  the presentation of the 
ARTa inputs and ARTb target outputs as well as the 
ARTb vigilance level are of particular importance. 

4.1. Timing Conditions under which MTA will never 
Arise 

The following theorem states the condition under 
which the match tracking anomaly will not occur. 

THEOREM 1. The match tracking anomaly will never 
arise in the A R T M A P  network when complement 
coded input~target pairs from a non-contradicting 
training set are presented to the network such that in 
each learning trial the ARTa input is presented first, 
and the network is allowed to make a prediction 
through the t mb map field before the ARTb (target) 
input is presented. 

If the A RTMA P  network is able to make a 
prediction before the target is presented, the ARTb 
module will be "primed" by the F2 b layer, which will 
send down its category template to the F b layer via 
the top-down pathways. We assume that the network 
dynamics are such that this top-down template will be 
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tested first at the F b layer as the target vector is 
registered into the F b layer. If  this top-down template 
(i.e. the network's prediction) and the target are 
sufficiently close to each other, no reset wave will be 
triggered, and the current F b selection will be 
confirmed, and subsequently learned. 
Proof. Let us assume that the network has previously 
learned to associate ARTa category J with ARTb 
category K through presentation of  the (a (i), b (i)) 
input/target pair. Let us assume furthermore that 
input pattern a(0 is coded perfectly by ARTa category 
J, i.e., a (i) = z~, which is the necessary condition for 
the MTA to arise if the inputs are complement coded 
( s ince  a (i) c Z~ can only be true if a (i) = z~). This can 
always be guaranteed by setting Pa to 1 so only 
perfect matches will be accepted at the vigilance test. 

We now show that the M T A  will not arise when 
the input/target pair (a(0, b(0) is presented again at 
some later stage during learning. Since there is no 
other input/target pair involving a(0 for which the 
MTA condition could arise (assuming a non-contra- 
dictory training set), we shall conclude that the MTA 
will never arise under the circumstances stated in this 
thoerem. 

When the input/target pair (a(O, b(O) is presented 
again, the MTA condition can arise only if the 
network makes a wrong prediction first. Since the 
input set is non-contradictory, this can only be 
possible if the ARTb module selects a category other 
than K. For  that to happen, however, first the ARTb 
vigilance test at the Fl b layer has to fail with the 
network's prediction z b, i.e. 

Ib(') nz~l 
I b(° I 

- -  < ~ (3 )  

must hold. 
In complement coding, the norm of  the target 

patterns is constant (here M b )  , therefore 

I=~1 -> ~Mb (4) 

for all F b category prototypes, and it follows from (3) 
and (4) that 

Ib ~') nzbl < Iz~l (5) 

should also be true. However, Zbr is already a subset 
of  b (i) since F b node K has already coded input b (i) 
before (hence the prediction), and therefore 

Ib (i) A zbr[ : [zb[ (6) 

which directly contradicts (5). Therefore it is 
impossible that the (first) vigilance test will fail with 
the current prediction z b when target b (i) is re- 
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presented at any later stage. Consequently, the MTA 
condition will never arise. []  

4.2. Timing Conditions under which MTA can A r i s e  

The following sections analyse conditions under 
which M T A  can occur. In particular, we show that 
the MTA can occur when a target pattern is 
presented to the network before the input (i.e., the 
network is not able to make a prediction), even if all 
inputs to the network are complement coded. We also 
distinguish between two MTA conditions: one that is 
independent of  the ARTb choice parameter (fib), and 
another that is not. 

Since in real-time situations, for which the A R T 
systems were designed, there is no guarantee that 
ARTa inputs will always arrive first, this problem is a 
valid one that needs to be investigated. 

THEOREM 2. The match tracking anomaly can arise in 
the A R T M A P  network when complement coded input/ 
target pairs f rom a non-contradicting training set are 
presented to the network such that some ARTb 
(target) inputs are presented before their correspond- 
ing ARTa input pair. There are at least two distinct 
conditions under which the M T A  can occur: one that is 
independent o f  the ARTb choice parameter (/~b), and 
another that is not. 

We denote the "/~b-independent" MTA condition 
by MTA-S (for "MTA  subset", as explained below), 
and the "/3b-dependent" one by MTA-/3. We shall 
still use MTA, however, to refer to the match 
tracking anomaly in general, and shall be more 
specific only when necessary. 

We shall prove this theorem by specifying initial 
conditions and sequences of  training patterns that 
will lead to the MTA in each of the two cases 
mentioned in the theorem. We note, however, that 
there might exist other conditions as well that are 
different from these two, although the results of 
experiments we carried out do not suggest this. 

Although the two conditions (MTA-S and MTA- 
/~) are different in that one does not depend on Ao and 
the other does, they have much in common. In both 
cases, 

• the network has previously seen the (a (il), b (il)) 
input/target pair, which causes the MTA, 

• the network has already an associative link 
between ARTa category J1 and ARTb category 
K1, 

• category J1 perfectly encodes input a (~l) (i.e., 
z ~ l  = a ( i l ) ) ,  

• category K1 has already been recoded, i.e., 
[ZbKll < g b (where Mb is the constant size of 
target patterns), and also includes target b UD (i.e., 
zbKI C b(/1)), 
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FIGURE 2. Graphical illustration of the MTA-S condition. Target patterns are represented as points on the two-dimensional plane. 
Categories are represented as rectangles, the area of each rectangle being proportional to the size of the category they represent. 
Figure 2a shows that category K1 is initially smaller (i.e., more specific) than K2, and target b 01) (circle) is inside (i.e., proper subset of) 
both K1 and K2.  If at some later stage, another target input is presented (diamond, in Figure 2b) that causes K1 to generalise to include 
that Input, K1 could grow larger than K2 as a resulL When target b (11) is re-presented, this time category K2 will capture it since it has 
now become more specific than K1. This will cause the anomaly to emerge as the network still predicts K1 through its previously 
learned J1 ~ K1 link. See detailed discussion in Section 4.2.1. 

• there exists another ARTb category (K2) "nearby",  
which is more specific than K1 (i.e., Izb21 > I zb, I), 

• ARTa vigilance parameter Pa is assumed to be high 
enough so no other a (j) ~ a (il) inputs from the 
training set will be coded by category J 1 (this limit 
depends on the particular training set, but the 
condition can always be guaranteed by Pa --- 1), 

• ARTb vigilance parameter Pb is assumed to be low 
enough that target b (il) will be found sufficiently 
close to both ARTb category K1 and K2 (i.e., 
Ib (il) nzbrl] > pbMb and I b(il) Nzbr2l > pbMb). 
Note that this also implies that Pb must be lower 
than 1. 

In both cases, the MTA will arise when the 
(a (i0, b (il)) input/ target  pair is presented again, and 
ARTb category K2 "captures" target input b (i]), 
which contradicts the network's prediction of ARTb 
category K1 (through its previously learned J1 --+ K 1 
association). Since input a (il) matches ARTa category 
J1 perfectly, the network will not be able to find a 
better match through match tracking, therefore the 
MTA will emerge. 

The difference between the two conditions is that 
in the MTA-S case both the K1 and K2 ARTb 
category prototypes (zbl and z~2 ) are proper subsets 
of  target b (i0 (hence the name MTA-S), i.e., 
Ib(il),n z~, I = I z%, I and I b/m nzbz l  = Iz~2 I, there- 
fore capturing ' o f b  (il) by K2 will not depend on/3b 
(see the paragraph' on the ART network's category 
selection in case of  proper subsets in Section 2). In the 
MTA-/3 case, ARTb category K2 prototype zb2 is not 

a proper subset of  target b (il) (while K1 prototype Zbl 
still is), so the selection of  ARTb category K1 or K2 
will depend on the strength of  the bottom-up match 
between zbx2 and target b (il), which in turn depends on 
the value of/3b due to (1). Figures 2 and 3 illustrate 
graphically the MTA-S and MTA-/3 conditions, 
respectively. 

We prove Theorem 2 by showing the existence of 
MTA in either of  the two conditions mentioned in the 
theorem (defined as MTA-S and MTA-/3 above). We 
specify initial conditions and training sequences in 
either case that will lead to the MTA. We must point 
out, however, that these training sequences are 
artificial (and simplified) examples that are only 
used to prove the existence of  MTA. In real 
applications, the necessary initial conditions (as a 
result of prior learning) as well as the "critical 
training sequence" can be observed through a variety 
of  actual training sequences. Moreover, the two 
distinct MTA conditions (MTA-S and MTA-/3) can 
even have a combined effect if /3b is above a 
threshold, which will produce an even richer variety 
of paths leading to the MTA. These were clearly 
observed in the experiments we carried out, the 
results of which are presented in Section 5. 

4.2.1. Proof o f  the M T A - S  Condition. In this section, 
we show how the ARTMAP network can be led to 
the MTA-S condition. First we shall assume that the 
network is in a particular state after prior learning, 
and show that presenting the input/target pair 
sequence (a (il), b(il)), (a (i2), b('2)), (a (/1), b (il)) then 
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K1 K1 *1 ! 

I .  

(a) (b) 

FIGURE 3. Graphical i l lustration of the MTA-fl condition. Target patterns are represented as points on the two-dimensional plane. 
Categories are represented as rectangles, the area of each rectangle being proportional to the size of the category they represent. 
Figure 3a shows category K1 and target input b 01) (circle) inside it. As a result of further training, some other target(s) have created 
category K2 "near "  K1 (see Figure 3b). K2 is more specific than K1, and initially does not include target b (11), although it could (with low 
enough Pb vigilance). When target b (11) is re-presented, it wil l  be captured by category K2 it it achieves a higher bottom-up activation 
than K1. This depends on the degree of overlap between b (n) and Zb=, and the choice parameter fin due to (1). See detailed discussion in 
Section 4.2.2. 

will cause the MTA to arise. Then we show that the 
particular (assumed) state of the network before this 
sequence can result from prior learning. 

Let us assume that the network has previously 
learned to associate ARTa category J1 with ARTb 
category K1. Also, ARTa category J1 has perfectly 
coded input a (il), and there is no other input in that 
category, i.e., 

z.~ I = a (i l) .  ( 7 )  

There is also another input (a (~2)), for which 

I a°2) ne]~l < mM~ (8) 

first, ARTb category K1 will be selected due to (9) 
and (11), which will be confirmed by the network 
through the selection of category J1 upon presenting 
input a (i0 due to (7), and the existing J1 ~ K1 
association) Due to (7) and (9), category prototypes 
Z~ 1 and z~l will not change during learning. 

Next, input/target pair (a (~2), b (i2)) is presented. 
Here, target input h (i2) will select ARTb category K1 
again due to (10) and (11). The network will then 
either find an existing ARTa category associated with 
ARTb category K1, or will create a new ARTa 
category to learn this association. In either case, 
ARTa category J1 will not be affected due to (8). 
ARTb category K1, however, will be modified this 
time, i.e., 

w h e r e  M a is the norm of the input patterns. 
Furthermore, target inputs b (il) and b ('2), and 

another ARTb category, K2, satisfy the following 
conditions: 

b'") n z L  = hi , .  n i l  = z r2, (9) 

i.e., both category prototypes are proper subsets of 
target b (il), and 

[ bu2) nzb~ I > bl' )n (lo) 

i.e., target b (i2) matches K1 category prototype zb~ 
better than zbx2, and 

Iz~, I > Izb21 > I b('2) nzb, [ ~ ~oMb, (11) 

i.e., category K1 is more specific than K2, and 
matches target b (i2) well enough, but not as well as 
category prototype zbx2 . 

If  we now present the input/target pair (a (i0, b (il)) 

Zbl (new) = b (i2) A Z~K, (old). 

Then input/target pair (a (il), b (i0) is presented 
again. Here, target input b (i0 will read out ARTb 
category K2 this time due to (9) and (11). However, 
a (il)  input will again read out ARTa category J1 
since it still matches z~l perfectly. As a result the 
J1 ~ K1 prediction will not be confirmed at the F ab 
layer, and the match tracking process will be 
triggered. This will, however, cause MTA since a (il) 

matches Z~I perfectly (i.e., I a(il) n Z~l II aU~)1-1 = 1), 
and Pa cannot be raised above 1. Table 1 illustrates 
the above sequence and its effect on the network. 

To complete the proof, we also need to show that 
such initial assumption for the ARTb category 
prototypes zb] and zb2 and target pairs b (il) and 

3 Alternatively, ARTa category d l  can be a newly created 
category, which will learn to associate ARTb category K1 during 
this trial, but it does not affect the proof. 
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TABLE 1 
A Sequence of Input/Target Patterns that Causes the MTA under Conditions Discussed in the Text 

Input ARTa F~ ---* F2 b Target 
Step a (i) Cat. No. Mapping ARTb Categories b (') 

. . . . . . . . .  ZbK1 ZbK2 . . .  . . .  

k a (jl) 21 d ---> K1 D ZbK1 <3 zb2 b (il) 
k + l  a (i2) :/:J1 #J1  --~K1 ? b(i2) Nzb 1 <3 9 zb2 b(i2) 
k + 2  a (il) J1 J--~ 1?2 [:> b(i2) fqZbK 1 ZbK2 <3 b (il) 

The ARTa categories are now shown here, only the index of the winning node in each step. Two of 
the developed ARTb categories, which are referred to in the text, are shown. The symbol "[:>" 
appears beside the ARTb category that the network predicts through the F~ --~ F b associations in 
each trial ("?" means it does not matter which category is predicted). The symbol "<3" denotes the 
category that is selected by the ARTb module before the corresponding input is presented. So in step 
k, the network's prediction is confirmed (i.e., " D "  and "<3" appear at the same category), while there 
is a mismatch in step k + 2, which eventually causes the MTA. 

b (i2) is "realistic", i.e., they can result from previous 
training of  the network. 

It is, however, not trivial to see. We cannot do it 
simply by first creating the proper J1- -~K1 
association and z a zb~ prototypes, and then Jl,  
another ARTb category (K2 with a prototype zb2), 
which is also a proper subset of  another input [here 
b (il), and see (9) as the assumption] such that 
[Zbll > Iz~2 I, as was assumed in (11). The network 
would not have selected category K2 when K1 is 
clearly a better choice. This situation can only come 
about if the required J1 ~ K1 association and z}l, 
zbr~ prototypes are created first, and then a particular 
sequence of  input/target patterns is presented, 
through which a new ARTb prototype (z b )  is first 
created, which is then gradually "eroded" (i.e., its 
norm decreased) in small enough pieces until 
condition (11) is reached, while leaving Zbl un- 
changed in each trial. For  simplicity, here we assume 
the smallest possible size for a "piece" by which Iz~21 
is decreased, which is one. 

More precisely, we present a sequence of input/ 
target pairs (a (j), b (j), j = 1, 2, ..) such that each 
input and the category prototypes in question will 
satisfy 

[ b(j) f ' lzb,  I = 1, (12) 

This can be shown by considering the following 
two cases: 
Case 1. 2 < [zb2[ < [zbl[ 
Here, (14) will hold since the numerator of  the right 
hand side is greater than I, and the denominator is 
smaller than that of  the left hand side. 
Case 2. 2 ,( ]Zbl ] • [zbK2 [ 

To see that (14) will hold in this case as well, we need 
to see first that 

1 1 Iz~ , l - -2  I z ~ , l -  1 (15)  
9÷ I z L ~  < 9÷ IzL------/ ~9+ Iz~,~ 9÷ IzLI- 

Now (14) holds again, since the 

x - 1  
f ( x )  --  fl + x 

function increases monotonically when x > 2 (here 
Iz~l > 2) with arbitrary/3 > 0. 

Therefore, the assumptions about the network's 
initial state [see inequalities (9) to (11)] were realistic. 
This completes the proof  of the MTA-S condition in 
theorem 2. []  

A concrete example with a complete sequence 
leading to the MTA-S is given in Table 2. 

and 

Izb2(new) I = Ib u) N zb2(old)l = Iz%(old)I-  1 (13) 

until [Zbl [ > Izb2 [ (see condition (11)). 
Now we need to show that in each step 

1 IZ~2[ -  l - -  < (14) 
f l + l z ~ l l  f l + l z ~ 2 l .  

In other words, ARTb category K2 will be selected 
(over K1) at the F2 b layer and allowed to change, 
while K1 remains unchanged. 

4.2.2. Proof of the MTA-/3 Condition. This section 
shows that there are situations where the MTA can 
occur if fib is above a certain threshold. 4 As in the 
previous section, we provide initial conditions and a 
training sequence that will lead to the MTA-/3. 

Let us take three input/target pairs (a ( i l ) ,  b(il)), 
(a (i2), b (i2)) and (a (i3), b(i3)). The patterns are 
complement coded (as was assumed), thus the norm 
of  the input and target v e c t o r s  (a (i) and b (/)) is 
constant (Ma and Mb, respectively). 

4 For clarity, we shall refer to fib as f from here on unless the 
distinction from fla needs to be made clear. 
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TABLE 2 
An Example Sequence of InpuffTarge! Pairs that Lead the ARTMAP Network to the MTA-S 

303 

ARTb Categor ies 
Input ARTa F~ --* F b Target 

Step a(0 Cat. No. Mapping z b z b b (/) 

1 1 1 1 1 1 1 1 - - , 1  1 1 1 1 1 <3 Unused 1 1 1 1 1 
2 1 1 1 0 0 2 2 - - , 1  1 1 1 x x <3 Unused 1 1 1 0 0 
3 0 0 0 1 1 3 3 - -~2  1 1 1 x x 0 0 0 1 1 <3 0 0 0 1 1 
4 1 0 0 1 1 4 4 - - * 2  1 1 1 x x x 0 0 1 1 <3 1 0 0 1 1 
5 0 1 0 1 1 5 5 - - ~ 2  1 1 1 x x x x 0 1 1 <3 0 1 0 1 1 
6 0 0 1 1 1 6 6 - - * 2  1 1 1 x x x x x 1 1 <3 0 0 1 1 1 
7 1 1 1 1 1 1 1--~1 D 1 1 1 x x <~ x x x 1 1 1 1 1 1 1 
8 1 0 0 0 0 7 7 - - , 1  1 x x x x <3 x x x 1 1 1 0 0 0 0 
9 1 1 1 1 1 1 1 ---~172 D 1 x x x x x x x 1 1 <3 1 1 1 1 1 

Here, each input pattern is identical to its corresponding target (i.e., auto-associat ive learning), and the norm of all patterns is 
5. For clarity, the complement  patterns are not shown. In category prototypes, a "x"  means "don ' t  care", which corresponds to 
a "00" bit pair  in complement  coding. For the ARTa module, only the winning nodes are shown. We assume that the ARTa 
vigi lance is high enough (e.g., Pa = 0.9) so the 11111 pattern will be the only one in its own category. ARTb vigi lance is less 
than 1/5 (e.g., job = 0 . 1 ) .  The use of the symbols " D "  and "<3" is the same as in Table 1. (The absence of the " D "  symbol in 
rows 1-6 indicates that  the network did not have a predict ion in these trials, and the corresponding J --, K links were created 
in those trials.) The F~ --~ F b mapp ings that  the network created or used in each trial are also shown. Steps 1-6 show the 
"erosion" process of ARTb category z b, whi le steps 7 and 8 "prepare"  the MTA condi t ion that  occurs in step 9. (Here, concrete 
category numbers are used, since these are the only patterns presented to the network). 

First, let Pa be high enough to cause ARTa to 
allocate an uncommited F~ node for each new, 
previously unseen pattern. This can always be 
guaranteed if Pa = 1. 

The target patterns satisfy the following condi- 
tions: 

Ib I") n b(i2)[ = LI2 (LI2 > 0), (16) 

I b(") nbt~S)l = LI3 (LI3 > 0), (17) 

such that 

LIs > LI2, (18) 

and 

In this case, we start with an untrained network, 
and look at the behaviour of  the ARTb module. (We 
also assume that category nodes become committed 
in the order of  1, 2, 3 , . . . ,  and thus these numbers 
will be used instead of  J1, KI ,  etc., used in the 
previous sections.) 

In the first step, when the (a (il), b (il)) pair is 
presented, b (il) will be learned by category 1, and the 
corresponding 1 --* 1 link will also be created (since 
input a (i0 will be learned by ARTa category 1). 

In the second step, target b (i2) will be captured by 
category 1, as it will achieve the maximal bottom-up 
activation (no other F2 b nodes are active as yet, and 
the initial bot tom-up weights are chosen to be small 
enough for the uncommited nodes), and 

[b c~2) nb(ml = 0. (19) Ib <i2) nz~l = LI2 > pbM, 

From (16), (17) and (19), it follows that 5 

Lt2+L13 <M.  (20) 

Also, let 

Z12 
Pb < M (21) 

We now show that under these conditions, 
presenting the above patterns in the order of  (a (i0, 
b(il)), (a(i2), b(i2)), (a(i3), b(i3)), (a (il), b (il)) will 

cause MTA to emerge if /3 is above a certain 
threshold. 

due to (21). Prototype z b is then modified to learn 
b (/l) N b ('2). 

In the third step, target b ('3) will create a new 
ARTb category z b as there will be a total mismatch 
between h ('3) and z~ due to (19). 

The interesting case is step four, when pattern 
(a (il), b (il)) is presented again. Here both existing 
ARTb categories will match the input sufficiently due 
to (18) and (21), so the selection will be based entirely 
on the bottom-up activation levels, which can be 
calculated in the following way. 

The bottom-up weights for ARTb categories 1 (z b) 
and 2 (z2 b) will be 

s For clarity, we refer to Mb simply as M since Ma is irrelevant 
to the proof here. 

1 1 
and 

~+LI2  f l + M '  
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TABLE 3 
The Sequence of Input/Target Pairs (s (11), b(ll)), (s U2), b(a)), (a (a), b(a)), (a (~1), b(11)), and the Developed ARTMAP 

Categories and F; --~ F b Associations 

ARTa Categories F~ ---+ F b ARTb Categories 
Step Input z~ z~ z~ Mapping z b z2 b Target 

1 a ( i l )  a ( i l )  Unused Unused 1 ~ 1 b ( j l )  Unused b (i l) 
2 a (i2) a ( i l )  a (i2) Unused 2 -+ 1 b ( j l )  fq b (i2) Unused b (i2) 
3 a (i3) a ( i l )  a (i2) a (i3) 3 --* 2 b ( i l )  CI b (i2) b (i3) b (/3) 
4 a ( i l )  a ( i l )  a (i2) a (i3) 1 --~ 1?2 b ( i l)  CIb (i2) b (i3) b ( i l )  

Since Pa is high enough, each new input creates a new ARTa category in steps 1, 2 and 3. The winning 
ARTb categories in each step are the ones that appear  on the r ight-hand side of the arrow in the "F~ --~ F2 b 
mapp ing"  column. The re-presentat ion of the first pair  in step 4 will cause the MTA if the bot tom-up 
act ivat ion of ARTb node 2 is higher than that of node 1. (Here, concrete category numbers are used, since 
these are the only patterns presented to the network). 

respectively. The bottom-up activations will therefore 
be 

L|2 Ll3 - - a n d - -  
f l  + LI2 f l  + M '  

respectively, due to (1). For  fixed L12, L13 and M, f l  
can always be set such that the b (il) target will select 
either category 1 or 2. This can be seen by examining 
the 

LI2 LI3 
- -  < - -  (22) 
f l+Ll2 fl+M 

inequality. If  (22) is satisfied, then ARTb category 2 
will be selected, and thus the MTA will emerge. 

Rearranging (22), we get 

>LI2(M-LI3) (23) 
L13 - LI2 

For  fixed LI2, LI3 and M that satisfies (20), the 
occurrence of  the MTA condition will therefore be 
determined by the choice of  3. Since the recom- 
mended setting of 3 is to be small (Carpenter et al., 
1991a, p. 579), it is worthwhile looking at how the 
lower limit of  3 in (23) is affected by the choice of 
LI2, L13 and M (which are determined by the 
problem at hand). 

To get the minimum value of  the right-hand side of 
(23), we need to minimise L12(M-L13), and 
maximise L 1 3 -  LI2. The minimum values for Ll2 
and M - Ll 3 are 1 and L12 [from (20)], respectively. 
The resulting choice for LI3(=M-LI2) will 
maximise L13 - LI 2. So the lower limit for 3 is 

1 
/~,i, = M -  2" (24) 

Therefore, for a given Mb, /~o should always be 
chosen to be smaller than ~ to avoid the MTA-3 
for patterns that satisfy conditions (16)-(21). 

Table 3 shows the developed ARTa and ARTb 
categories as well as F~ --~ F b links in response to the 
input/target pairs discussed here. 

This completes the proof  of  the MTA-3  condition 
in theorem 2 as well as theorem 2 as a whole. []  

A concrete example is given in Table 4, with 
M = 4, L13 = 3, and L12 = 1. Here, if fl > ½, the 
MTA condition will arise. 

4.3.  ARTb v ig i lance  level  and M T A  

This section deals with an important special case of 
the A R T M A P  network where the ARTb vigilance 
level (Pb) is 1. This setting is commonly used in 

TABLE 4 
An Example Input/Target Pattern Sequence that Demonstrates the MTA-fl  Condition 

ARTa Categories F~ --* F2 b ARTb Categories 

Step Input z~ z~ z~ Mapping z b z2 b Target 

1 1 1 1 1 1 1 1 1 Unused Unused 1 --~1 1 1 1 1 Unused 1 1 1 1 
2 1 0 0 0 1 1 1 1 1 0 0 0 Unused 2 - - . 1  1 x x x Unused 1 0 0 0 
3 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 3 - - * 2  1 x x x 0 1 1 1 0 1 1 1 
4 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 --~1?2 1 x x x 0 1 1 1 1 1 1 1 

Here, each input pattern is identical to its corresponding target, and the norm of all patterns is 4. The ARTMAP categories and 
links that  were developed in response to this sequence are also shown. For clarity, the complement  patterns are not shown 
here. In category prototypes, a "x" means "don' t  care", which corresponds to a "00" pair  in complement  coding. The ARTa 
and ARTb vigi lance parameters (Pa, Pb) are set to 0.8 and 0.3, respectively. If f l  > ½, the MTA will occur in step 4 when input/  
target pair  (1111, 1111) is re-presented, because ARTb category 2 will be selected. This contradicts the network's predict ion of 
category 1 through the link that was created in step 1. The MTA will thus emerge. 
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pattern classification applications wherd outputs 
represent target classes. The following theorem 
reassures us that the M T A  will not arise when Pb = 1. 

THEOREM 3. The match tracking anomaly will never 
arise in the A R T M A P  network i f  pb = 1 regardless of  
the timing used to present complement coded input/ 
target pairs from a non-contradicting training set. 

Proof. If  Pb = 1, then no ARTb category will recoded 
during training, i.e., I zb ] = Mb for all ARTb category 
prototypes. Therefore, upon presentation of input/ 
target pair ( a  (i), b (i)) that the network has seen before, 
either a previously learned J1 ~ K association will be 
confirmed, in which case ~ l  ---- a(i), or a new J2  ~ K 
association will be created through match tracking, in 
which case Iz~21 < M~ and therefore raising Pa will 
not cause MTA. In neither of  these cases will ARTb 
category K be recoded so the MTA will not 
arise. [ ]  

5. EXPERIMENTAL RESULTS 

In the previous sections, we proved the existence of 
the match tracking anomaly by specifying initial 
conditions and constructing training sequences that 
lead to the MTA. These were relatively simple and 
"clean" examples that let us concentrate on the 
underlying problem. In reality, however, there are a 
number of  different ways the network can be driven 
into the MTA, which are dependent on the training 
set and the presentation order of  input/target pairs 
during training. For  example, before any step of  the 
above example training sequences, there can be a 
number of input/target presentations that are 
irrelevant to the occurrence of  a given MTA. This 
section presents experimental results that will 
demonstrate the existence of  the two MTA condi- 
tions analysed here. 

We carried out experiments on a machine learning 
benchmark database. Unlike in Carpenter et al. 
(1991a), where target outputs were codes for correct 
output categories, here the ARTMAP network was 
used to develop two-level class hierarchies from the 
training set (Bartfai, 1994). In particular, each input 
was identical to its target pair, and both the ARTa 
and ARTb modules developed clusterings of  patterns 
from the same training set at different levels of  
vigilance. 

For  the experiments, we used the "zoo"  machine 
learning benchmark database (Murphy & Aha, 1992). 
It contains 101 instances of  animals described with 18 
attributes. Out of  these attributes, we used the 15 
boolean ones that indicate the presence or absence of  
certain features like "hair" ,  "aquatic",  "domestic",  
and so on. We also used the "number  of  legs" 
attribute, which is a set of  six integers. The " type"  (or 

class) attribute was ignored. 6 The patterns were 
presented to the A R T M A P  network in complement 
coding. However, complement coding was defined for 
binary patterns only in Carpenter et al. (1991 a). Since 
one of  the features here (see "legs" above) is not 
binary, we had to encode that feature as well in a way 
that was compatible with complement coding. For  
this, we have defined a coding scheme that we call 
generalised complement coding, which can be applied 
to arbitrary-sized sets. 

According to generalised complement coding, a 
value vi of  a set ~ =  {Vl, . . . ,  vs} will be mapped to a 
binary vector (c) of  length of  s such that 

(~ i f / : j  
c) = otherwise j = 1, . . . ,s .  

So, for example, if an attribute takes on the value 4 
from the set of  {0, 2, 4, 5, 6, 8}, then the 
corresponding binary vector will be 001000. Note 
that if s = 2, tl~is scheme will be equivalent to the 
original form of  complement coding. 

This way, we can keep the size of the (binary) 
input pattern to the network constant, thereby 
implementing a form of  "binary normalisation" of  
the input. In the case of  the database used in the 
above way, the input and target patterns were 36- 
element binary vectors, in which the number of  ls 
was the same (16). 

The simulations were carried out using a public 
domain neural network simulator program (PlaNet, 
see Miyata, 1991) running under Unix and X- 
windows. 

The network parameters were chosen to be similar 
to those presented in Carpenter et al. (1991a). In 
particular, the initial values of  the boStom-up weights 
in both A RT modules were chosen such that F2 nodes 
become active in the order j =  1,2, . . .  and were 
small enough so the network selected an uncom- 
mitted ARTa or ARTb node only if l a (i) n z~ I -- 0 or 
I b(i) N Zk b [ = 0, respectively, for all committed nodes. 
Also, the fla and fib parameters were sufficiently small 
that, among committed nodes, bottom-up activations 

la(O n~l  Ib(') nz~l 
- -  -- ~ and 
~a+lz~l Bb+lzbl 

were determined by the sizes of  la (0 A z~l and 
Ib (/) N zb[ relative to I z~l and [z b 1, respectively. This 
also satisfied the ~b < flmin condition in Section 4.2.2. 
The network was used in fast learning mode, i.e., 
during learning, the connection weights were allowed 

6 The 18th attribute ("animal name")  was simply used as a 
label for the individual instances. 
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TABLE 5 
Frequencies of MTA Occurrence at Different Levels of the fl 

Choice Parameter when the ARTMAP Network was Trained on 
the "Zoo" Database (see details in text) 

Total MTA in epochs MTA in trials 
f l  Epochs Total % Total % 

0.001 215 30 14.0 78 0.4 
0.01 215 30 14.0 78 0.4 
0.1 215 30 14.0 78 0.4 
1.0 252 49 19.4 119 0.5 

10.0 370 228 61.6 1270 3.4 
100.0 491 250 50.9 1662 3.4 

Each row shows the results of the same set of 100 training 
sessions. In each training session, the network was trained 
completely on the training set, i.e., training stopped when no 
further weight changes occurred in the network for a full 
training cycle (or epoch)i The ARTa and ARTb vigilance 
parameters (Pa, ,Ob) were 0.4 and 0.1, respectively. The "total 
epochs" column shows the total number of presentations of 
the entire training set during the 100 training sessions. The 
"MTA in epochs" columns show the number of epochs in 
which MTA occurred at least once (both in absolute and 
percentage). The "MTA in trials" columns show the total 
number of learning trials (i.e., input/target presentations) in 
which MTA occurred during the 100 training sessions. 

to reach their asymptotic values while the current 
input/target pair was presented. 

Training proceeded by showing input/target pairs 
repeatedly, until the network stabilised itself, i.e., 
each input read out its prototype directly, so no 
further learning took place. 

Table 5 shows the results of  measurements we 
carried out into the frequency of MTA when the 
network was trained on the "zoo" database. It can be 
seen that with small /3 values, the MTA condition 
occurred in about 14% of the training epochs (i.e., 
one full presentation of  the entire training set). This 
accounts for only 0.4% of the total number of  input/ 
target presentations. It demonstrates that the MTA 
condition can arise even when fl is small. 7 These are 
the MTA-S cases that were discussed in Section 4.2.1. 
However, we can see a sharp rise in the frequency of 
MTA as/3 increases beyond a certain threshold. This 
demonstrates that increasing/3 does affect the MTA 
(See MTA-fl discussed in Section 4.2.2). The fact that 
this threshold appears in the range of  [0.1, 1], which is 
slightly higher than the limit 

1 -- 14 -l ~ 0.07 
M - 2  

that was derived in Section 4.2.2, suggests that MTA- 

7 We tried even smaller values for ft. The numbers did not 
change until rounding took effect due to the finite accuracy of 
representable numbers in computer simulations. Very often, the 
two effects (MTA and rounding) cancelled each other out 
suggesting falsely that the MTA condition will disappear if fl 
becomes very small. This may serve as a warning about the limits of 
computer simulations. 

f l  does not take immediate effect, probably because 
here it is superimposed on the MTA-S, or that the 
patterns did not satisfy all of  the conditions from (16) 
to (21), (19) in particular. In the latter case, even the 
theoretical limit would possibly be lower than what 
was derived in Section 4.2.2. 

We also observed that, on average, two out of 
every three MTA occurrences were due to race 
conditions at the bottom-up activations (i.e., two or 
more F2 b nodes achieved the same maximal bottom- 
up activation for the current input). In the 
simulations, we broke these ties by declaring the 
node with the smallest index the winner. As a result, 
some true MTA conditions may have remained 
unnoticed as the above tie breaking method chose 
the correct category (whereas another one would not 
have). We believe, however, that this did not affect 
the results significantly. (Besides, the aim of these 
experiments were to demonstrate that these anom- 
alous situations do exist, and not to derive empirical 
formulae on just how often they occur.) 

We also carried out a separate set of experiments 
where the ARTa and ARTb vigilance levels were 
varied. The results for various combinations of Pa 
and Pb can be seen in Table 6. 

First, it supports Theorem 3 since no MTA 
occurred when Pb was 1. Also, an interesting pattern 
can be observed in the table: the MTA will not occur 
if Pa ~_ Pb. This is because in the A R T M A P  network, 
the ARTb module will always "force" its categorisa- 
tion onto ARTa through the internal feedback 
mechanism. In these "auto-associative" experi- 
ments, the ART modules were presented with 
identical input patterns. As a result, they developed 
identical categories for Pa < Pb. Since no recoding of  

TABLE 6 
MTA Occurrences at Different ART. and ARTb Vigilance Levels 

(P,,,/% E {0.1, 0.4, 0.7, 1}) 

Vigilance MTA % of 
Pb Pa Epochs Trials 

0.1 0.1 0 0 
0.4 14.0 0.4 
0.7 36.8 1.0 
1.0 80.2 7.7 

0.4 0.1 0 0 
0.4 0 0 
0.7 50.0 1.8 
1.0 94.9 9.9 

0.7 0.1 0 0 
0.4 0 0 
0.7 0 0 
1.0 54.1 1.5 

1.0 0.1 0 0 
0.4 0 0 
0.7 0 0 
1.0 0 0 

The choice parameter (f l)  was fixed at 0.001 here. All other 
settings are the same as in Table 5. 
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an ARTb category could occur without recoding its 
corresponding ARTa category too, the MTA did not 
arise in these cases. For  the remaining combinations 
(i.e., Pa > Pb), we can see an increasing effect of  Pa on 
the MTA frequencies. This is simply because as Pa 
increases, more and more inputs will be encoded 
perfectly by ARTa category nodes, which is a 
necessary condition for MTA (see Section 3). 

Finally, if the timing of  the input and target 
presentations were according to Theorem 1 (i.e., 
ARTa input presented before ARTb target), no MTA 
occurrences were found in any of  the training sessions 
we carried out. This supports the claim of  Theorem 1, 
and further underlies the importance of  the timing 
according to which inputs are presented to the 
A R T M A P  network. 

6. DISCUSSION 

In the previous sections, we proved the existence of 
the match tracking anomaly in the ARTM A P  
network. The question now arises whether the match 
tracking anomaly can be eliminated even if the timing 
of  input presentations is "undesired". We note first 
that in pattern recognition problems, this can be done 
simply by setting Pb = 1 (see Theorem 3 in Section 
4.3). In general, however, the ARTMAP network 
needs some protection mechanism against MTA. 

In the experiments, for example, where the 
A R T M A P  network was used to develop two-level 
class hierarchies (Bartfai, 1994), and the target was 
presented before the input in each trial (i.e., the 
"undesired" timing), we modified the standard 
A R T M A P  learning method as follows: 

Whenever the MTA condition arose, the network 
found an uncommitted ARTa node and learned 
the input and its association with the current target 
(in the original algorithm no learning occurred in 
these cases). It also "undid"  the existing (wrong) 
association by freeing up the corresponding ARTa 
node (i.e., making it uncommitted again) and 
resetting its F~ ~ F ab link. (This way, we ensured 
all ARTa category prototypes remained unique, 
and every input could access its category directly 
after self-stabilisation, both of which are impor- 
tant features of  ART networks.) In MTA-free 
learning trials, the standard A R T M A P  learning 
method was applied. 

This modification was an adequate solution to 
eliminate the MTA condition since the training set 
was not contradictory here. In general, however, the 
occurrence of  MTA may also be the result of  a 
contradictory training set, in which case, learning the 
new association and forgetting the old one "blindly" 
may not be the best strategy. Therefore, in a real- 

world, autonomous learning environment, the net- 
work should be equipped with additional mechan- 
isms that ensure correct operation. In particular, we 
recommend that: 

. 

. 

The choice parameter be chosen to be sufficiently 
small to avoid the "E-dependent" MTA condition 
(experimental results suggest that the limit may be 
lower than what was derived in Section 4.2.2); 
the network be extended with an "internal self 
checking" process that is activated whenever the 
MTA occurs. This process should first disable 
further learning temporarily, and then let the 
ARTa module make an internal prediction (while 
keeping the target input registered in the F0 b layer) 
to get the correct timing, and check for the MTA 
condition again. If  MTA persists, it will be an 
indication of  a contradicting input/target pair, in 
which case the network should not learn on the 
current inputs. If  MTA disappears, which 
indicates that the target input was presented first 
and that was the cause of  MTA, the network 
should learn the current input/target pair with the 
correct ("ARTa first, then ARTb")  timing. It 
could be the subject of further research to validate 
the correctness if this procedure, and to see if it 
can be implemented as an extension to the current 
match tracking process. 

We also note that although the "anomalous 
situation" that can arise in the A RTMA P  network 
was reported in relation to the match tracking process 
(Carpenter et al., 1991a), the problem itself lies not 
with the match tracking process itself. Whatever 
method is used to correct a wrong prediction, if the 
ARTa category matches the input perfectly, there is no 
way the network can find another category that will 
capture the same input (thereby produce the correct 
output) on future trials. In fa¢t, we could even replace 
the match tracking process with some other method 
that can correct a wrong prediction of  the network, 
for instance the one that was used in Tan (1992), and 
would still face the same problem. So regardless of 
the mechanism used to correct a wrong prediction, it 
is important  that the network be able to "prime" 
itself with its "expectation" before the target is 
presented, and subsequently learned. 

7. CONCLUSION 

This paper analysed the match training anomaly of 
the A R T M A P  network. We showed that it can occur 
even when the inputs from a non-contradictory 
training set are presented to the network in 
complement coding. We conclude that the timing 
according to which the input and target patterns are 
presented to the network in each learning trial is 
critical if the ARTu vigilance level is less than 1. 
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To avoid the match tracking anomaly when input 
patterns are complement coded, the ARTa input 
has to be presented first, letting the network 
"prime" the F~ layer by its own "expectation" 
(through previously learned F~ ~ F~ associa- 
tions), before the target input is presented to the 
ARTb module. 

If we cannot guarantee this timing, as in most real- 
world, autonomous learning tasks, we have to equip 
the network with additional mechanisms, like the one 
recommended in the previous section which ensure its 
correct operation. 

We expect the MTA condition will also be present 
in other ARTMAP architectures, like the Fuzzy 
ARTMAP network (Carpenter et al., 1992), for 
example. It would be interesting to see how the 
theorems presented here should change so they 
incorporate continuous inputs as well as slow 
learning mode. This again can be the subject of 
future research. 
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